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Abstract

The requirement to develop new techniques for insect control that minimize neg-

ative environmental impacts has never been more pressing. Here we discuss pop-

ulation suppression and population replacement technologies. These include

sterile insect technique, genetic elimination methods such as the release of insects

carrying a dominant lethal (RIDL), and gene driving mechanisms offered by

intracellular bacteria and homing endonucleases. We also review the potential of

newer or underutilized methods such as reproductive interference, CRISPR tech-

nology, RNA interference (RNAi), and genetic underdominance. We focus on

understanding principles and potential effectiveness from the perspective of evo-

lutionary biology. This offers useful insights into mechanisms through which

potential problems may be minimized, in much the same way that an under-

standing of how resistance evolves is key to slowing the spread of antibiotic and

insecticide resistance. We conclude that there is much to gain from applying

principles from the study of resistance in these other scenarios – specifically, the

adoption of combinatorial approaches to minimize the spread of resistance evo-

lution. We conclude by discussing the focused use of GM for insect pest control

in the context of modern conservation planning under land-sparing scenarios.

Introduction

Insects spread disease and destroy millions of tons of crops

each year. With global climate change and an ever-increas-

ing population size, there are significant challenges associ-

ated with safeguarding people from disease and

maintaining food supplies. This provides an urgent stimu-

lus to develop new methods for insect control. Traditional

approaches include pesticides, integrated pest management,

and biological control. However, each has serious draw-

backs because of environmental and social costs and/or lack

of (cost-) effectiveness. For example, synthetic insecticides

have been widely applied against a wide variety of pests and

disease vectors – but their continual application selects

strongly for resistance and is also nonselective, destroying

natural enemies of the pests as well as perturbing the eco-

system as a whole. In addition, with increasing concerns of

off-target effects of pesticides, the range of chemicals avail-

able for control is diminishing.

In light of these concerns, and due to potential problems

with existing methods, there has been increasing interest in

applying genetic modification (GM) techniques for insect

control (Thomas et al. 2000; Deredec et al. 2008). In these,

the aim is to harness the natural mating system of the pest

in order to introduce into the pest population traits that

will ultimately lead to its demise. Genetic methods that are

transmitted or inherited through one sex, and which steril-

ize, kill, or cause sex change in the other, offer the greatest

control potential (Bax and Thresher 2009). A goal in devel-

oping and assessing new methods, and in refining existing

ones, is to understand whether it is ultimately better to

optimize control strategies over a range of different species,

environmental, and biotic conditions, or instead to employ

highly species- and/or environment-specific targeting (see

section Control strategies made evolution-proof or evolu-

tion-resistant, below; Leftwich et al. 2014).

Insect pests can be particularly difficult to control effec-

tively using traditional nonselective methods such as bio-

cides or insecticides if they are hard to target, or occur in

close proximity with humans. For example, agricultural

pests that exhibit flexible host use may have refugia across

multiple host species, making them difficult to locate and

eradicate. For pests in which the larvae reside within host

fruits, the delivery of exogenously applied control agents
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may also be relatively ineffective at targeting the relevant

life history stages. Insecticides used to treat disease vectors

such as mosquitoes need to be accurately targeted because

of the co-occurence of the insect vector with human resi-

dences. However, mosquitoes such as Aedes aegypti are

opportunistic in their breeding and resting sites; hence,

finding all potential habitable spots for these insects may be

difficult and labor intensive. Selective and species-specific

mechanisms, that is, those in which control is achieved

when released males seek out wild females for matings,

transmitting to them sterility or genes that kill offspring,

therefore offer many advantages. A major one is that they

rely upon the natural mating system of the pest, honed by

natural selection over many millennia.

Broadly speaking, the control technologies that employ

genetic mechanisms fall into two types: (i) those that act to

suppress local populations and are themselves self-limiting,

eventually becoming extinct, and (ii) those in which the

pest population is replaced by a more benign form or in

which a trait is self-sustaining and driven through the pest

population to reduce the harm caused by the pest (Alphey

2014). These different strategies differ in the extent to

which the introduced genes persist in the population. From

an environmental perspective, the longer-term impacts of

these contrasting strategies upon the population structure

and population genetics of the pest species involved may be

very different, as discussed further below.

Self-limiting population suppression mechanisms

Sterile insect technique

A key breakthrough in achieving effective and environmen-

tally benign insect control was the introduction of the sterile

insect technique (SIT) over half a century ago (Knipling

1955). This is a species-specific method of insect suppres-

sion (Hendrichs et al. 1995; Krafsur 1998) in which insects

are mass-reared under factory conditions, sterilized by irra-

diation, and then released. The released males mate with

wild females and these sterile matings lead to a reduction in

the size of the pest population. SIT is generally more effec-

tive if only males are released (Rendon et al. 2004). This

prevents the introduction into the population of females

that can damage fruit crops or transmit disease and mini-

mizes any reduction in the efficiency of suppression arising

due to assortative mating among released individuals (rather

than between released males and wild females). However,

male-only releases require that there is an efficient mecha-

nism for sex sorting. SIT males must be able to seek out

females and mate. However, SIT males are typically less

competitive than wild males because of their history of

adaptation to factory, rather than natural, conditions and

because the irradiation used for sterilization significantly

reduces fitness (Brice~no and Eberhard 1998; Brice~no et al.

2002; Lux et al. 2002; Parker and Mehta 2007). This

reduced competitiveness can be mitigated to some extent by

releasing more insects and increasing the overflooding ratio.

Therefore, SIT males are often released periodically in large

numbers to flood the resident population in order to

achieve control. SIT has had great successes – but also some

failures and trials in which only limited success was reported

(e.g., in some mosquito trails conducted in the 1970s,

reviewed by Benedict and Robinson 2003).

SIT has been used with success against the New World

screwworm fly (Krafsur 1998), melon fly (Iwahashi et al.

1983; Kuba et al. 1996; Koyama et al. 2004), medfly, and

tsetse fly (Hendrichs et al. 1995). There are, however,

acknowledged problems, which may be responsible for

examples in which SIT has not been successful or has had

limited impact (e.g., Benedict and Robinson 2003). Sterili-

zation by irradiation is perhaps the most significant prob-

lem because of the deleterious impact it has on the fitness

of the released insects. A lower irradiation dose can be used

to reduce harmful effects on fitness, but will allow some

fertile individuals to be released. The sterilization dose used

therefore needs to balance the degree of sterilization

achieved versus its fitness impact. Additional problems are

the deleterious side effects caused by ‘domestication’ of

wild strains during mass rearing, leading to poor field per-

formance of released males (Cayol 2000).

As noted above, ‘male-only’ releases are advantageous

for control (Rendon et al. 2000; Rendon et al. 2004), pro-

vided that efficient sex-sorting mechanisms can be

achieved, because they reduce the collateral damage caused

by the release of sterile females (e.g., fruit ‘stings’ or biting)

and prevent matings among released insects that have zero

control value. Efficient sex-sorting mechanisms can reduce

the impact of some potential drawbacks of SIT, such as the

evolution of ‘behavioral resistance’, that is, discrimination

by wild females against mating with SIT males (e.g., McIn-

nis et al. 1996) and the evolution of changes in the timing

of mating that lessen the probability of matings between

released and wild flies (e.g., Economopolous et al. 1971;

Economopolous 1972; Miyatake and Shimizu 1999). How-

ever, poor reliability of sex-sorting mechanisms for such

male-only releases can result in additional problems for

maintaining productivity and release strain stability (Sea-

wright et al. 1978; Papadopoulos et al. 1998; Hendrichs

et al. 2002; Lux et al. 2002; Robinson et al. 2002; Barry

et al. 2003; Mossinson and Yuval 2003; Robinson et al.

2004; Windbichler et al. 2008). An increased frequency of

remating by wild females mated to sterile SIT males, which

can significantly reduce the effectiveness of SIT, is also pos-

sible (Kraaijeveld and Chapman 2004). Together these fac-

tors can explain examples of poor field performance and/or

mating discrimination against SIT males (McInnis et al.

1996; Cayol 2000).
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Release of insects carrying a dominant lethal

To circumvent problems identified with the application of

SIT, there has been intense interest in GM technologies

(Handler and James 2000; Heinrich and Scott 2000;

Thomas et al. 2000; Horn and Wimmer 2003; Robinson

et al. 2004; Fu et al. 2007). One such method that has been

developed for a range of different pests and tested in labo-

ratory through to open field conditions is the ‘release of

insects carrying a dominant lethal’ (RIDL; Thomas et al.

2000). RIDL offers potentially significant improvements

over SIT (Schliekelman and Gould 2000; Thomas et al.

2000) perhaps most importantly because it circumvents the

need for sterilization using irradiation. All fitness costs of

irradiation are therefore eliminated. RIDL technology can

target both sexes, but as noted above, the delivery of sex-

specific action offers significant benefits for control. As an

example of the application of RIDL technology, the female-

specific (fs) ‘fsRIDL’ system (Fu et al. 2007) induces

female-specific lethality through alternative splicing of sex-

specific introns, leading to the production of a tetracycline-

repressible transactivator fusion protein (tTA) in females,

resulting in a lethal tTA positive feedback loop. Adding tet-

racycline to the diet suppresses lethality – but in the wild,

the lethality is expressed and kills females at the pre-adult

stage.

Transgenic RIDL insects have now been produced for

pests of economic (Gong et al. 2005; Ant et al. 2012; Jin

et al. 2013) and medical (e.g., Phuc et al. 2007; Fu et al.

2010; Harris et al. 2011) importance. Using the female-

sterile system, male-only releases are easily achieved by

removing tetracycline from the diet in the release genera-

tion. fsRIDL therefore offers a simple way to reduce or

eliminate females in the pest population. In addition, the

use of autofluorescent markers for transformation (Horn

et al. 2002; Fu et al. 2007) facilitates the detection of

released individuals in the field. Caged and field-caged tri-

als of RIDL medfly (Ceratitis capitata; Leftwich et al. 2014),

olive fly (Bactrocera oleae Gmelin; Ant et al. 2012; Harvey-

Samuel et al. 2014), diamondback moth (Plutella xylostella

L.; Jin et al. 2013), mosquitoes (Aedes aegypti; Phuc et al.

2007; Wise de Valdez et al. 2011), and pink bollworm (Pec-

tinophora gossypiella; Jin et al. 2013) show the potential for

RIDL strains to eliminate or control the spread of wild-type

populations. More recent tests of RIDL strains are now

employing more complex setups and following fitness out-

comes in multigenerational designs (e.g., Harvey-Samuel

et al. 2014). These studies have the potential to highlight

sensitivities of strains that are not apparent under simpler

glass house or laboratory tests. This approach could be fur-

ther expanded in the future to capture likely performance

under an ever-broader range of ecological and environ-

mental conditions. Despite the findings that GM strains

may sometimes show evidence of reduced competitiveness

in direct comparisons with wild types, there are neverthe-

less many examples of their potential effectiveness to con-

trol pest populations (Thomas et al. 2000; Fu et al. 2007;

Harris et al. 2011; Wise de Valdez et al. 2011; Ant et al.

2012; Jin et al. 2013; Harvey-Samuel et al. 2014; Leftwich

et al. 2014). Any fitness loss of the GM strains can normally

be countered by procedures such as increasing the fre-

quency or number of released individuals.

RIDL technology is advanced in terms of its application

under open field conditions in comparison with other GM

control strategies. For example, strains of RIDL mosqui-

toes (Phuc et al. 2007) have already been subject to open

field testing in the Cayman Islands (Harris et al. 2011,

2012), Malaysia (Lacroix et al. 2012), and Brazil (Alphey

2014). In these field trials, the released male insects were

found to persist in the environment, to locate wild females

and successfully mate with them and to achieve pest pop-

ulation suppression (Harris et al. 2011, 2012; Alphey

2014). Genetically sterile RIDL A. aegypti strains have also

been tested under field release conditions. They show sim-

ilar field longevity and maximum dispersal distances to a

progenitor strain, but exhibit reduced mean dispersal dis-

tances (Lacroix et al. 2012). The potentially reduced flight

potential of RIDL insects such as mosquitoes should be

considered when developing facets of the release programs

such as release sites and release densities (Bargielowski

et al. 2011).

The success of GM technology itself depends on the

effectiveness of the construct in killing, whether its effects

are sex-specific (e.g., Fu et al. 2007), the life history stage at

which it kills (e.g., Phuc et al. 2007) the stability of the

transgene construct, the stability of the insertion, any fit-

ness costs arising from insertion of the construct, and any

fitness costs of the expression of the construct. The killing

potential of the strains for potential release can be isolated

in initial laboratory testing, as can the exact life history

stages affected (Thomas et al. 2000; Fu et al. 2007). The life

cycle stage that is targeted depends upon the specific pest

and the reagents available. For example, for RIDL programs

against agricultural pests in which larvae live within com-

mercially important crops, early-acting lethality might be

advantageous to limit larval penetrance into fruits and

hence reduce spoilage. However, under female-sterile pro-

grams (e.g., Fu et al. 2007), any such benefit is negated as

male RIDL larvae survive and continue to damage fruit

(Leftwich et al. 2014). In contrast, for non-RIDL programs

that target vectors of disease such as mosquitoes, transgenes

that act to reduce the probability of disease transmission

should ideally be much later acting in order to enhance

additional control arising from increased density-depen-

dent mortality among larvae (which do not themselves

cause disease, e.g., Wise de Valdez et al. 2011).
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Stability of GM construct locations in the genome can be

achieved by removing the mechanisms or sequences needed

for the gene carriers (e.g., transposable elements) to remobi-

lize (Dafa’alla et al. 2006). Internal stability of the GM con-

structs themselves is also important to avoid breakdown of

the mechanisms they deploy. The potential for such break-

down can be assessed using stress tests of GM strains, sub-

jecting them to heat and food stresses and testing whether

killing ability is compromised. Fitness costs arising from the

insertion site of constructs causing mutagenic effects in the

host genome are normally circumvented by producing and

comparing multiple lines with different insertion sites and

then selecting those with the least impact on performance.

Docking mechanisms to introduce constructs (e.g., Nimmo

et al. 2006) into the same, low fitness impact, genomic loca-

tion each time (similar to the ‘Gateway’ technology) would

be a useful development for the future.

Fitness effects associated with the expression of the

transgenes (e.g., of markers) that are separate from the kill-

ing effects are also possible. These can be measured under

controlled conditions by comparing the fitness of individu-

als bearing the transgenes in the activated or nonactivated

form. Although it is possible to do this in practice, it has

proved more fruitful to compare the overall performance

and fitness of the GM in comparison with progenitor (e.g.,

Massonnet-Bruneel et al. 2013) and/or wild-type strains

(e.g., Leftwich et al. 2014). These tests combine the sum of

the effects noted above as well as any deleterious effects

arising from the process of domestication (Table 1).

Probiotics to enhance SIT and RIDL performance

It is now widely recognized that a significant contribution

to host fitness comes from associations with commensal

gut bacteria (the gut microbiome; Dillon and Dillon

2004). As in vertebrates (Turnbaugh et al. 2006; Vijay-Ku-

mar et al. 2010), the gut microbiome in invertebrates can

have widespread and significant effects on fitness (Dillon

and Dillon 2004; Ben-Yosef et al. 2008a). In pest and non-

pest fruit flies, changes in the gut microbiome can alter

life span, mate choice, reproductive physiology, develop-

ment, and metabolism (Behar et al. 2008a,b; Ben-Yosef

et al. 2008a,b; Sharon et al. 2010; Shin et al. 2011). The

number and diversity of gut bacteria of laboratory- and

mass-reared pest and nonpest fruit flies is diminished in

comparison with wild flies (Ben Ami et al. 2010; Chandler

et al. 2011). Hence, there is evidence that the gut microbi-

ome changes significantly during domestication. While the

diet can alter the composition of the gut microbiome to

some extent, there is an emerging picture that there are

core members of this community irrespective of diet.

Almost nothing is currently known, however, about how

these core components colonize the gut, the role of the

host in that process and transmission routes. With these

factors in mind, attention has turned to the potential for

probiotic treatments to improve sterile SIT male repro-

ductive performance (Gavriel et al. 2011).

Changes to the gut microbiome are of particular interest

for GM strains such as those using the RIDL technology,

which all utilize tetracycline-repressible promoters (e.g.,

Thomas et al. 2000; Alphey 2002; Alphey and Andreasen

2002). As noted above, in these strains, the lethality or

manipulated gene expression is under the control of a tet-

racycline-repressible promoter. The effects of the construct

are suppressed during normal culture in the laboratory or

factory using dietary tetracycline (e.g., Fu et al. 2007; Phuc

et al. 2007). The continual exposure of RIDL strains to

antibiotics is likely to (i) alter the composition of gut bacte-

rial communities through a reduction in gut bacterial

diversity and (ii) select for tetracycline-resistant gut bacte-

ria. The effect on host fitness of gut bacterial communities

that are altered in these ways is not yet known.

It is therefore important to understand whether any

loss of gut bacteria in domesticated laboratory strains

and in those maintained on antibiotic diets can be slo-

wed or reversed by variation in dietary regimes or sup-

plementation with bacteria in the diet. That such

‘probiotic’ treatments have significant promise is shown

by experiments in which the reproductive performance

of sterilized male medflies was improved by diet supple-

mentation with Klebsiella oxytoca (Gavriel et al. 2011).

Incompatible sterile matings

The sterile-male incompatible insect technique (IIT) can

lead to a type of population suppression that is similar, in

principle, to SIT and RIDL (Brelsfoard and Dobson, 2009;

Laven 1967). It can be conferred by incompatible matings

between individuals infected/not infected by strains of

maternally inherited intracellular bacterial parasites such as

Wolbachia (Brelsfoard and Dobson, 2009). Control is

achieved through the cytoplasmic incompatibility pheno-

type (CI) that occurs when Wolbachia-infected males mate

with uninfected females resulting in female sterility. The

exact mechanism is still not fully known, although it results

in early development arrest in the embryos produced from

incompatible matings.

Control could therefore be achieved if Wolbachia-

infected males were released into a non-Wolbachia-infected

population to mate with noninfected females. This strategy

has been considered for several insects, including mosqui-

toes and medflies (Brelsfoard and Dobson, 2009; Zabalou

et al. 2009). It has been realized that, in mosquitoes, males

can be released without increasing the number of biting

insects (only females bite and transmit disease), and

because Wolbachia is inherited solely through the maternal
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line, the released insects do not spread Wolbachia through

the population, and hence, males represent an evolutionary

‘dead end’ (O’Connor et al. 2012). It is important under

this control scenario that no infected females are released,

as all matings with infected females are compatible (indeed,

this is the mechanism for driving Wolbachia through popu-

lations by gene driving, see below). The risk of simply con-

tributing to the expansion of the pest population can be

reduced if the target population is also infected but with a

different strain of Wolbachia, giving bidirectional CI and

sterility in eggs resulting from both types of matings that

could occur.

The potential success of this strategy was first demon-

strated in Culex quinquefasciatus mosquitoes many decades

ago (Laven 1967). However, it was thought not to be gener-

ally applicable because there were perceived to be limited

numbers of examples of bidirectional CI. However, with

increased ability to artificially transfect species (e.g., with

Wolbachia strains), this technique may now offer new

opportunities for control. For example, this type of self-

limiting control using Wolbachia has been observed in

Aedes polynesiensis mosquitoes. This species carries a natu-

ral, single-strain Wolbachia infection. Release of males arti-

ficially transfected with a different Wolbachia strain derived

from another Aedes species resulted in successful bidirec-

tional incompatibility with the wild-type Aedes polynesiensis

population, including in open field tests (Brelsfoard et al.

2008; O’Connor et al. 2012).

Population replacement or introduction of traits
that reduce the deleterious impact of the pest

For population replacement to confer insect control, mech-

anisms to drive genes through populations to effect control

are needed. Driving mechanisms are required in which

genes exhibit non-Mendelian transmission, to enhance

their own representation above that of other genes in the

genome. Several such driving genes or systems are known,

including Wolbachia-based (Hoffman et al. 2011), homing

endonuclease genes (HEGs; Burt 2003), and transposable

element-based systems (e.g., Medea). We focus in this sec-

tion primarily on the Wolbachia and HEG systems. The

recently described ‘mutagenic chain reaction’ (MCR) sys-

tem conferred by CRISPR gene editing is discussed in the

following section on newer technologies.

Key to successful invasion of traits that will lead to control

of the target pest is an understanding of the ease of driving

genes conferring the control trait through the population.

The initial establishment and spread of drive is the crucial

step and depends on many factors which sum to a property

known as the ‘invasion threshold’. However, some drive

systems can theoretically spread from any initial frequency

(Deredec et al. 2008; Alphey and Bonsall 2014) althoughT
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stochastic effects are expected to be significant at low initial

frequencies (which will be true for any type of release pro-

gram). Whether the invasion threshold, if it exists, is high or

low determines the size and frequency of the initial inocu-

lum into the pest population required to achieve control

(Alphey 2014). These issues are not unique to drive-based

systems, and overflooding thresholds for achieving suppres-

sion are also critical for success in the SIT and RIDL meth-

ods described above. These ratios determine whether the

released flies reduce damage to below the relevant economic

threshold or disrupt disease transmission efficiently.

Driving refractoriness to pathogen transmission using

Wolbachia

One of the best-known gene drive systems is that, associ-

ated with Wolbachia, a maternally inherited intracellular

parasite. Wolbachia infection can result in a number of dif-

ferent driving phenotypes such as male killing and cyto-

plasmic incompatibility (CI), depending on the species

infected and Wolbachia strains involved. It is the CI pheno-

type that offers the potential for control because, through

females, it can drive Wolbachia infection (and any control

potential offered by the parasite) through populations.

Wolbachia-infected females have a substantial fitness

advantage over uninfected females (which become sterile

following matings with infected males) and given that the

Wolbachia parasite is maternally inherited, and this will

result in an increase in Wolbachia in the population as a

whole (Turelli and Hoffmann 1995).

To date, Wolbachia infection has been used to control

disease (e.g., dengue virus) transmission in mosquitoes.

Wolbachia infection is known in mosquitoes to interfere

(by as yet unknown mechanisms) with the efficiency with

which hosts can transmit pathogens such as dengue virus.

Hence, the driving of Wolbachia through such species using

CI can potentially reduce the spread of disease (Hoffman

et al. 2011; Yeap et al. 2011). A proof of principle for insect

control by this method comes from the spread of a strain

of Wolbachia derived from Drosophila through natural

populations of Aedes aegypti in Australia (Hoffman et al.

2011). Similarly, Wolbachia-induced refractoriness to the

spread of Plasmodium by the mosquito Anopheles stephensi

has also reported (Bian et al. 2013). More recently,

improvements to the potential spread and penetration of

Wobachia into natural populations are proposed by linking

the introduction of Wolbachia to insecticide resistance

(e.g., Hoffmann and Turelli 2013).

Homing endonucleases

Homing endonuclease genes (HEGs) are found naturally

among fungal genomes and represent a potentially power-

ful mechanism for driving genes through populations to

achieve insect control (Burt 2003; Deredec et al. 2008).

Although the primary focus is on HEG as gene drivers, it

should be noted that self-limiting forms of HEG control

are also possible (Burt 2003). In the heterozygous state, the

protein encoded by HEG genes causes a double-stranded

break to occur in the homologous chromosome at the same

position. If the break is repaired using the HEG-bearing

chromosome as template, the HEG becomes homozygous

as a result of gene conversion or homologous recombina-

tion. This mechanism therefore represents a powerful

means for driving genes through populations, using HEGs

as vehicles. In agricultural pests, potential control agents

that could be loaded into HEGs are genes that decrease via-

bility or that decrease female fecundity or distort the sex

ratio. The latter could be especially effective, for example, if

HEG activity could be restricted to the male germ line but

act on female-specific traits or inactivate or degrade the X

chromosome.

Proof of principle experiments for insect control via

engineered HEGs has been conducted in the fruit fly Dro-

sophila melanogaster, in which sperm development and the

female germ line were targeted by the HEG I-SceI (Chan

et al. 2011). HEG-derived drive has also been shown

in vivo using the same drive gene in Anopheles gambiae

mosquitoes, where it appears to occur at much higher effi-

ciency (Windbichler et al. 2011). This is partly because in

D. melanogaster, the homologous recombination needed

for the drive to occur appears to be restricted to specific

sperm cell stages within the testis. However, the efficiency

of HEG drive can, in principle, be improved by trialling

different genetic constructs. The overall efficiency of HEG

drive is also significantly affected by temperature (Chan

et al. 2013), which will be an important consideration if

this technology moves into field trials.

The effects of population genetics upon the spread of

HEG-based systems have also been investigated using theo-

retical approaches (Alphey and Bonsall 2014). The results

show that the success of HEG-based drive depends critically

upon the interaction of population genetic and ecological

factors such as density-dependent effects during larval

competition, the timing of the impact upon fitness of HEG

drive, and the relative fitness of the different wild-type and

HEG genotypes present in the population.

Control potential of new, or underutilized,
techniques

CRISPR and the mutagenic chain reaction

A new, and potentially revolutionary, gene drive system

recently gained attention in the context of insect control

(Esvelt et al. 2014), with a recent study in D. melanogaster

reporting 97% transmission (i.e., well over the expected
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25% Mendelian outcome) of a normally recessive, loss of

function yellow pigmentation gene (Gantz and Bier 2015).

This was achieved using the increasingly popular CRISPR

gene-editing tool (Jinek et al. 2012) to create a ‘mutagenic

chain reaction’ (MCR). The transmission efficiency

reported by this new method far exceeds that which can

currently be achieved with the HEG strategies described

above and this technology therefore offers a highly potent

prospect for gene drive control. The MCR technique used

was, however, criticized on the basis of its lack of safe-

guards (Bohannon 2015). The editing and targeting

sequences were contained within the same gene cassette,

meaning that there was no way to stop or ‘recall’ the gene

drive once initiated. However, such safeguards can be built

in and, with such efficient driving, the possibility to drive

through subsequent neutralizing genes should also be con-

sidered.

Control through gene manipulation via RNA interference

Concerns about the use of GM technologies, and variation

in the length of time needed to address regulatory concerns

in different countries, have prompted interest in the use of

RNA silencing to produce sterile males for control releases

(e.g., Thailavil et al. 2011; Whyard et al. 2015). Such meth-

ods are currently considered non-GM technologies. The

RNA silencing method relies on the introduction into the

target insects of double-stranded RNA that is complemen-

tary to the endogenous gene to be silenced. The double-

stranded RNA (dsRNA) then catalyzes the degradation of

the target RNA via the RNA interference (RNAi) mecha-

nism (reviewed by Bartel 2004). dsRNA can be introduced

into invertebrates via feeding or injection and exert a sig-

nificant silencing phenotype. There are several possibilities

for control, including the silencing of testis-expressed genes

in order to sterilize males or to manipulate genes in the sex

determination pathway in females, for example, to change

females into sterile pseudomales (e.g., Thailavil et al. 2011;

Whyard et al. 2015). A recent study fed dsRNA to larvae of

Aedes aegypti mosquitoes and showed reduced fertility in

groups in which male testis genes were silenced and an

increase in the number of males: females in groups in

which female-specific doublesex RNA was targeted (Whyard

et al. 2015). Key to success of RNAi for control will again

be the relative competitiveness of the released insects, the

efficiency of sterilization (to minimize the release of fertile

males), cost, and the likelihood of resistance evolution.

Insect control through reproductive interference and the

actions of seminal fluid proteins

Incomplete mate recognition, leading to reproductive

interference in matings between closely related species, is of

core interest in evolution and ecology because of its role in

maintaining species barriers. It may often also be asymmet-

ric (when reciprocal interspecific matings incur different

fitness costs). This ‘satyrization’ has long been considered

of potential interest in insect control because of its poten-

tial to result in competitive displacement of species

(DeBach 1966). For example, there is the potential for con-

trol if an insect vector exhibiting low disease transmission

characteristics could be introduced to replace a resident

species with high disease causing potential.

Such a phenomenon is thought to have occurred in

the USA in mosquitoes of the genus Aedes. Aedes aegypti,

a major vector of dengue virus, suffered competitive

exclusion following the spread over the last 3 decades of

the Asian tiger mosquito A. albopictus (Bargielowski and

Lounibos 2014). Aedes albopictus itself can carry and

transmit dengue and chikungunya viruses, although it is

generally thought to represent a lower risk to human

health. Hybrid matings are costlier to A. aegypti than to

A. albopictus females, as seminal fluid proteins (Sfps)

from A. albopictus males transferred into A. aegypti

females render the latter refractory to conspecific matings

(Tripet et al. 2011). There is no such effect in the reci-

procal mating, conferring the observed asymmetry in fit-

ness costs. This asymmetry and the associated costs of

hybrid matings predict selection for rapid evolution of

reproductive character displacement in areas where the

two species occur in sympatry, to prevent such matings.

Interestingly, evidence for just this phenomenon has

recently been described (Bargielowski et al. 2013). Asym-

metry in fitness following hybrid matings across many

species of Drosophila is well known (Coyne and Orr

1989). However, the contribution of Sfps in this context

has not been studied, even though it was first described

decades ago (Fuyama 1983). Further research into the

potential for control via reproductive interference could

therefore be useful. A potential problem for insect con-

trol under satyrization, however, is that successful com-

petitive exclusion could select for resistance, leading to

the potential reinvasion of the pest.

The biodiversity and potential control toolkit repre-

sented by Sfps is extensive. These molecules vary hugely in

structure (Mueller et al. 2005) and function (Ram and

Wolfner 2007) and cause a profound remodeling of female

behavior and physiology following their transfer during

mating (e.g., Chapman 2001; Sirot et al. 2014). They can

alter female sexual receptivity, ovulation and egg laying,

feeding and sleeping, sperm storage, retention and usage,

and immunity gene expression (Sirot et al. 2014). These

phenotypes have significant effects on fitness (Chapman

et al. 2003; Chapman 2006) and some genes that encode

Sfps evolve extremely rapidly (Swanson et al. 2001; Clark

and Swanson 2005).
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In pest species such as medflies Sfp transfer can alter

female behavior from that associated with seeking mates to

that associated with searching for oviposition sites (Jang

et al. 1998). This offers the potential for self-limiting con-

trol strategies in which females might be prevented from

switching on behaviors associated with crop damage (egg

laying). There has also been much research on Sfps in

Anopheles mosquitoes (e.g., Baldini et al. 2013; Gabrieli

et al. 2014; Shaw et al. 2014). These studies offer much in

the way of raw material for exploring new control strategies

(Davies and Chapman 2006). The potential for Sfp engi-

neering, perhaps combined with asymmetric reproductive

interference, is so far relatively untapped and could offer

useful complementary additions to the control strategies

described above. It is worth anticipating that, as with other

methods, those based upon Sfp engineering have the poten-

tial to become compromised by the evolution of resistance

(e.g., behavioral resistance against mating with Sfp-manip-

ulated males). Strategies to mitigate such effects should

therefore be simultaneously considered.

Underdominance for driving control mechanisms

Underdominance occurs when the fitness of a heterozy-

gote is lower than for both corresponding homozygotes.

In theory, this can be used to drive an underdominant

transgenic construct into a population to replace wild-type

alleles (Davis et al. 2001; Altrock et al. 2010; Reeves et al.

2014). The likelihood of population allele replacement

depends upon the initial frequency of introduction and

does not require that both wild-type and introduced

homozygotes have equal fitness, just that both their fit-

nesses are greater than the heterozygote. Such a system

would be geographically limited and reversible (by reintro-

duction of the wild-type allele), hence represent a self-lim-

iting form of control.

The principle of insect control through drive resulting

from underdominance has been around for decades. How-

ever, a recent study successfully developed proof of princi-

ple in D. melanogaster (Reeves et al. 2014). The expression

of a Minute locus was knocked down in heterozygotes. In

this, RNAi was used to knock down the expression of one

of the many Minute loci. Minutes are haplo-insufficient;

therefore, the knockdown resulted in a dominant, deleteri-

ous fitness effect (significantly delayed development, small

size). The transgenic homozygote was rescued from this

effect by the inclusion of a rescue gene to elevate the level

of the Minute transcript to a functionally wild-type level.

The introduction of the underdominant transgene caused

successful replacement of the wild-type allele in as little as 5

generations in laboratory population tests. The introduc-

tion of transgenes that render hybrid matings costly could

though select for the rapid evolution of mating barriers

between the wild type and transgenics, which might reduce

its efficiency.

With the ever-increasing opportunity to design con-

structs for greater stability and efficiency, further work into

these new or under-employed genetic mechanisms might

be very useful in light of the findings that they have at least

the potential for efficient gene drive.

Risks of existing and new technologies

The risks of the various control methods and mitigation

strategies are discussed elsewhere (e.g., Alphey 2014; see

also Bohannon 2015) and summarized only briefly here.

The relative risks are generally held to be lower for suppres-

sion in comparison with replacement or driving mecha-

nisms. This is because suppression mechanisms are

inherently self-limiting and drive themselves extinct,

whereas driving mechanisms have greater persistence and

longer-term consequences should the technology fail. RIDL

technology is further advanced than any of the other cur-

rent GM control methods and has been successfully sub-

jected to laboratory greenhouse, field cage, and open field

trials (Wise de Valdez et al. 2011; Ant et al. 2012; Harris

et al. 2012; Jin et al. 2013; Harvey-Samuel et al. 2014; Left-

wich et al. 2014). The open field release of GM insects is

not without controversy, and any such release obviously

requires extensive licencing, technical, regulatory, and pub-

lic engagement activity to investigate the safety of the tech-

nology in terms of to the environment and human health.

Public engagement activities are also essential to inform

and address potential concerns. Upholding the ideal of

maximum transparency at all stages is of prime impor-

tance.

In terms of GM, concerns are often raised about the sta-

bility of the GM constructs and the possibility of escape.

Both are possibilities, however remote, whose risks need to

be calculated and assessed. In principle, single- and tightly

linked genetic units should be less resistant to recombina-

tion and hence breakdown than larger or multicomponent

systems. It is also important to understand whether the

ultimate consequences of such a breakdown are likely to

be the inadvertent spread of introduced genes or gradual

loss of the introduced genetic material. In general, risk

mitigation and recall strategies for all GM methods are

essential to consider from the initial proof of principle

stage.

A perspective from evolutionary biology

The general importance of bridging the gap between evolu-

tionary biology and genetic pest management to develop

effective and long-lasting control strategies has been well

recognized (Gould 2008). This dialogue can usefully inform
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the most effective way in which to target pests and to pre-

vent the control strategies employed being degraded by the

evolution of various forms of resistance.

The basics are straightforward and well understood; if we

apply a selective pressure for any trait, then, given sufficient

genetic variation, the population will respond. The

response of the population to that selection pressure will be

determined by the size of the selection differential (the dif-

ference in the mean value of the trait under selection in the

original versus selected parent populations). The heritabil-

ity of the trait under selection can be calculated by the ratio

of the response over the selection differential (Falconer and

Mackay 1996). The selection differentials that exist when

wild strains are brought into the laboratory or factory can

be huge – covering all aspects of life histories (Table 1). In

effect, when pest strains are domesticated, a large-scale arti-

ficial selection experiment is conducted upon the ability of

individuals to survive and prosper in the novel environ-

ment. We should therefore expect released insects to have

compromised performance when placed into field environ-

ments to which they are no longer adapted.

There are many ways in which the process of generating

insects for control programs has the potential to result in

selection for traits that are likely to lessen the effectiveness

of released insects in the field. The life history consequences

for laboratory selection in this context have been consid-

ered in some detail (e.g., Cayol 2000). What has been less

well implemented are strategies to tackle them, even

though with adjustments to husbandry practices such

effects could, in principle, be circumvented or minimized

(Table 1).

The general consequences of domestication are a signifi-

cant reduction in genetic diversity. The initial stages of

domestication often involve a fairly savage bottleneck,

which can significantly reduce genetic diversity in compari-

son with wild progenitor populations. This increases the

net effect of genetic drift and the likelihood that rare gene

variants important for success in the field may be lost.

However, unless the bottleneck is particularly drastic, of

greater importance are changes in allele frequencies that

subsequently occur due to strong selection for domestica-

tion. A proposed solution to this problem is to conduct

periodic introduction of wild individuals into the domesti-

cated strains (the ‘fresh blood’ technique). This would help

to reduce the impact of many of the concerns listed in

Table 1, although increases in the genetic diversity, and any

associated benefits, may be temporary as wild alleles are

likely to be selected against in the laboratory or factory

environment. An associated problem is the loss of genetic

diversity in the accompanying microbiome of the domesti-

cated individuals. There are obvious cost implications of

the potential solutions above as they decrease productivity.

However, it is also important to consider that little work

has yet been performed on the relationship between the

improvements suggested above and the gain in control

effectiveness.

Comprehensive stress testing of GM strains is crucial to

prevent unwanted surprises down the line. For example,

the effect on strain stability of temperature, food availabil-

ity, humidity, and pathogens should all be examined. For

control mechanisms in which the sex-specific lethality relies

upon the absence of dietary additives, it must be clear that

such additives cannot be encountered at anything close to

an effective dose by the released insects in the field or urban

settings. Further insight into predicting the likely effective-

ness of released insects may also come from a better inte-

gration of population genetics. For example, understanding

population genetics, gene flow, and the effects of partial

reproductive isolation are important for understanding the

impact and efficiency of release programs (e.g., Endersby

et al. 2011).

Understanding sexual selection and the mating biology of

pests is crucial to improving control via GM and non-GM

technologies

As emphasized above, the production of safe and fit

insects for release is key to success of all SIT and GM tech-

nologies (Scolari et al. 2011). One important lesson rele-

vant to all control strategies discussed above, both GM

and non-GM, is that knowledge of the life history and

reproductive biology of the pests involved is as important

now as it has ever been (e.g., Brice~no and Eberhard 1998;

Brice~no et al. 2002; Leftwich et al. 2012; Oliva et al. 2013;

Perez-Staples et al. 2013). Important insights into the suc-

cess of SIT and genetic control programs have come from

knowledge of compounds that affect male mating behavior

(e.g., Kouloussis et al. 2013), the best attractants for traps,

and the effect of sterilization on mating and remating

behavior (Kraaijeveld and Chapman 2004). Direct com-

parisons between the fitness and competitiveness of strains

carrying GM technologies versus controls and the wild-

type populations remain an essential part of the toolkit

for validation of these technologies (e.g., Morrison et al.

2009; Massonnet-Bruneel et al. 2013; Leftwich et al.

2014). Also of great importance is knowledge of the effects

of domestication on the control potential of released

insects. This knowledge can be used to minimize the

effects of selection for traits that compromise control

efficiency.

Trapping and detection methods are also key to success-

ful insect control and just as important to the successful

implementation of genetic control methods as the basic

genetic technology itself. Therefore, continuing research

into attractants is important to gain knowledge into the

incidence and distribution of pest populations, and to
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easily and reliably detect released versus wild insects in the

field (e.g., Juan-Blasco et al. 2013). This includes theoreti-

cal and empirical investigations of the effects of environ-

mental factors (Dufourd and Dumont 2013).

Understanding of the dispersal of released insects is also

important to predict the likely effectiveness of insect con-

trol from released programs (e.g., Gavriel et al. 2012). To

date, there has been little consideration of the age structure

of the population into which insects will be released. This is

of particular importance if there is any assortative mating

by age and can affect the numbers of released insects likely

to give effective control (Huang et al. 2009). Future empir-

ical research into these factors may be useful.

We conclude that ultimately it should be possible to

minimize the impact of natural selection on the effective-

ness of insect control by SIT and GM methods by under-

standing what are the principal and key elements of

reproductive success of the pests in the natural environ-

ment and building the understanding of that knowledge

into rearing practices.

Control strategies made evolution-proof or
evolution-resistant

Evolution is inevitable given the existence of genetic varia-

tion, and, given this, evolution by natural selection is also

assured whenever a selective force is applied. The evolution

of resistance to control strategies of all kinds is, therefore,

inevitable. Control programs cannot be made evolution-

proof, but the deleterious impact of natural selection on

control efficiency can be substantially mitigated. There is

recognition that combinations of simultaneous and diverse

approaches are needed to prevent degradation in the effec-

tiveness of individual approaches over time (Deredec et al.

2008; Alphey 2014). However, there has been very little

exploration to date of the most efficient combinations of

genetic techniques for insect control. A combination of

approaches is needed not just to spread risk in a general

sense, but to diffuse the strength of natural selection

focused on specific traits likely to diminish the effectiveness

of control.

We suggest that there is much to learn from the study

of insecticide, chemotherapy, and antimicrobial resistance

(AMR). AMR in particular is a grand challenge, represent-

ing a major global threat to human health in terms of our

ability to combat infectious disease as well as to treat can-

cer via chemotherapy. Although the contexts are different,

the underlying principles of how to slow the spread of

resistance are conceptually similar as they all rely upon the

same evolutionary principles. It has also been recognized

that facets of resistance are predictable according to mech-

anisms of resistance and the environment in which resis-

tance evolves. Therefore, an approach that integrates

across these levels is needed (Maclean et al. 2010). Think-

ing across insecticide resistance and AMR has led to the

proposal of four major strategies to slow and manage the

evolution of resistance (REX consortium, 2013) as out-

lined below.

1 Responsive alternation refers to the strategy of sequential

use, applying different control methods in series (but not

cycling them). For example, one method might be

applied continually until resistance is observed and then

the next method applied.

2 Periodic application is when control methods are cycled

or rotated; hence, a pesticide might be used for 6 weeks

then a second used then back to the first.

Note that in methods (1) and (2), the application of con-

trol varies over time but not space (i.e., is uniformly

applied everywhere).

3 Mosaic is an approach that varies space but not time. For

example, at least two different control methods are

applied simultaneously but in different places and the

places in which they are used do not overlap. An example

might be the use of different antibiotics in different hos-

pitals or different pesticides in different fields.

4 Combination is when 2 or more approaches are applied

concomitantly over time and space. An example is the

use of combinatorial therapy for HIV infection, with

multiple drugs being applied simultaneously.

Variation of all of these approaches using full- and half-

strength control strategies is also possible. Allied to the

thinking that less than total eradication might be useful is

recent research into the need to prevent chemotherapy

resistance, which suggests that managing cancer, rather

than eradicating it, may sometimes be a more successful

strategy overall (Greaves 2007; Read et al. 2011).

A recent review of the efficacy of these methods applied

across very different contexts in medical and agricultural

settings (REX Consortium 2013) suggests that, in terms of

their ability to slow the evolution of resistance, combination

methods were best, outperforming periodic application and

mosaic approaches (which were equivalent) and all were

better than responsive alternation. The combination

approach works well because it ensures that individuals are

killed even if they are resistant to one of the approaches

applied.

The basic underlying principle is to create scenarios in

the target population (be it microbes, insects, or crops) in

which there is greater variation in selection pressure on the

pest to evolve resistance. This strategy will ultimately give

rise to more sustainable pest control over the long term.

Imposing variation in selection pressure for resistance is

important because it presents a less strong but, more

importantly, a moving target. Encouragingly, initial sugges-

tions for combinatorial approaches are being made. For
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example, Deredec et al. (2008) suggest that the evolution of

resistance to HEGs could be slowed by simultaneously tar-

geting multiple genes using multiple HEGs, or by targeting

multiple sites within the same gene. HEG constructs should

also be rigorously designed to reduce the probability that

the expression of the gene product becomes separated from

the recognition site. Other possibilities are to combine

RIDL systems that employ female-specific lethality with

releases of engineered males susceptible to other control

methods (e.g., to insecticides or to Bacillus thuringiensis

(Bt)-engineered toxins expressed by GM crops). Such

methods could provide dilution of resistance across the dif-

ferent mechanisms (Alphey et al. 2007; Alphey et al. 2009;

Alphey et al. 2011). Genes introduced into wild popula-

tions by released males will be inherited by males in sys-

tems that employ female-specific lethality and by both

sexes if resistance permits some progeny to survive the

effects of the engineered ‘lethal’ genes. Theory suggests that

inheritance of susceptibility genes through this mechanism

can slow or potentially reverse the spread of resistance

mutations to RIDL, prolonging the effectiveness of this

technology (Alphey et al. 2011). This resistance dilution

would potentially work for release programs, such as RIDL

or SIT, in which releases are sustained over time, but is not

expected to occur in drive-based systems that employ lim-

ited, inoculative releases.

An important consideration for combination

approaches, should they be adopted for insect control, is

that SIT and GM approaches have well-documented fitness

costs, as outlined above (e.g., costs of bearing GM con-

structs, loss of fitness upon irradiation, costs of bearing

Wolbachia infection). Such fitness costs incurred simulta-

neously under a combination approach have the potential

to impose a greater fitness ‘load’ upon the release popula-

tion and potentially reduce its effectiveness. These costs

would therefore have to be weighed up against the advanta-

ges. Fitness costs to released insects of SIT and GM technol-

ogies have been mentioned in several different contexts,

and their magnitude is a key determinant for successful

control. Under a traditional model in which there is a fixed

resource pool that can be allocated to different life history

traits but which cannot maximize them all simultaneously.

The costs of bearing a GM construct or driving strain of

intracellular microorganism are therefore likely to lead to

trade-off with other life history traits with effects on fitness.

The need to recognize and minimize resistance has not

yet permeated deeply into discussions of SIT and GM

insect control. An approach similar to responsive alterna-

tion is sometimes used in SIT programs – for example, pes-

ticides may be used to reduce initial population sizes before

SIT intervention. Combination control has, though, been

used in other agricultural contexts. GM crops engineered

using Bt technology have been developed that produce sev-

eral different toxins against their target pests (Cui et al.

2011). A combination approach involving the use of Bt

crops and sterile insect releases to target pink bollworm

(Pectinophora gossypiella) removed the need for insecticide

sprays and was effective at reducing pest abundance while

maintaining current resistance levels to Bt cotton (Tabash-

nik et al. 2010).

Improved targeting of insect control

Consideration of the problems created by the blanket use

of broad spectrum antibiotics that has hastened in the cur-

rent potentially catastrophic problem of AMR has led to

increased interest in improved diagnostics coupled with the

use of newer narrow spectrum (highly selective) antibiotics.

Such a strategy facilitates the use of combination therapies

discussed above.

Box 1: General principles for maintaining fitness and
competitiveness of control strains and increasing effec-
tiveness in control programs

• Keeping the domesticated progenitor and GM strains

in an outbred genetic background with frequent out-

crossing to promote the maintenance of a wild-type

ancillary genome.

• Keeping the domesticated environment as complex

and varied as is feasible.

• Diet variation and supplementation may be useful to

maintain variation in traits related to nutrient acqui-

sition and to maintain diverse gut microbiomes.

• Knowledge of the ecology, life history, and reproduc-

tive success of wild-type strains is essential to inform

best practice in husbandry and in trapping technol-

ogy.

• Simple GM constructs and vehicles seem more likely

to be stable and hence less likely to break down than

more complex ones.

• Drive systems should have built in safeguards.

• Theory, parameterized by real world data, is essential

to predict and test program-specific optimal invasion

thresholds, release ratios, release frequencies, release

timing (with respect to season and resident popula-

tion size), release population composition (e.g., age

structure).

• Strategies from the study of insecticide resistance and

antimicrobial resistance (AMR) could lead to

improved strategic and combined deployment of

GM and non-GM strategies.
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Translating this into the control strategies considered

here, diagnostics would equate to developing a better

understanding of the pest problem (its ecology, population

dynamics, fluctuation, location, intensity), and narrow

spectrum antibiotics to an understanding (based upon the

diagnostics) of which selection of diverse GM and non-GM

specific control strategies available could be targeted most

effectively. There is no reason why this new thinking on

rapid, point-of-need strategies combined with better stew-

ardship could not, in principle, be applied in terms of GM

technologies for control. We offer some general thoughts

on principles to maintain fitness and competitiveness of

control strains and hence increase effectiveness of control

programs (Box 1).

Insect control and conservation

In this final section, we conclude by discussing briefly an

emerging idea that GM technologies for insect control are

not necessarily in conflict with modern conservation plan-

ning. These research areas have typically proceeded along

very separate lines, but dialogues led by new thinking in

conservation practice may offer opportunities for synergy.

For example, recent research in conservation has advanced

the controversial idea that ‘land sparing’ has the potential

for greater conservation value than does ‘land sharing’

(Phalan et al. 2011, 2014). Under this scenario, there is

greater preservation of biodiversity through the intensifica-

tion of farming on existing land. This is because it allows

for less land to be used for the same yield and therefore

more land to be freed up to return to its natural state, or be

preserved, and support a greater number and diversity of

natural species than is true under other conservation sce-

narios. Increases in productivity in the order of a few % per

annum could support this scenario and are predicted to be

possible. Control of agricultural pests using GM technolo-

gies could play a role under this scenario. They allow rela-

tively cost-effective and targeted control of insect pests

with less environmental impact than is true for pesticides.

This sets up the interesting situation that rather than being

in opposition to the preservation of biodiversity, the devel-

opment of advanced GM technology could actually be part

of the solution to preserve it. Future work on integrating

the likely efficiency savings for yield of the application of

GM control programs would be especially useful to ground

truth these interesting ideas.
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