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ABSTRACT: CRISPR−Cas9-based “gene drive” technologies
have been proposed as a novel and effective means of controlling
human diseases vectored by mosquitoes. However, more complex
designs than those demonstrated to dateand an expanded
molecular toolbox with which to build themwill be required to
overcome the issues of resistance formation/evolution and drive
spatial/temporal limitation. Foreseeing this need, we assessed the
sgRNA transcriptional activities of 33 phylogenetically diverse
insect Polymerase III promoters using three disease-relevant
Culicine mosquito cell lines (Aedes aegypti, Aedes albopictus, and
Culex quinquefasciatus). We show that U6 promoters work across species with a range of transcriptional activity levels and find 7SK
promoters to be especially promising because of their broad phylogenetic activity. We further show that U6 promoters can be
substantially truncated without affecting transcriptional levels. These results will be of great utility to researchers involved in
developing the next generation of gene drives.
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A limited set of RNA Polymerase III (Pol III) promoters,
mostly from U6 and H1 genes, have been used in

eukaryotic synthetic biology systems to express short non-
coding RNAs without the 5′ and 3′ mRNA modification
associated with Polymerase II expression. The U6 small
nuclear RNA (snRNA) has a highly conserved 106−108 nt
sequence and an external 5′ promoter structure that is
remarkably similar to that of an RNA Pol II promoter, namely,
a TATA-like box and proximal sequence element (PSE). 7SK
is another RNA Pol III-transcribed abundant snRNA, whose
function in transcriptional regulation is conserved from
invertebrates to humans. Like U6, 7SK has an external 5′
promoter structure, similar conserved domains (a TATA-like
box and PSE), and in mammals distal elements consisting of an
SPH domain and OCT motif.1 7SK RNAs have been identified
in multiple arthropod species, including Dipterans.2,3 In this
work, we have explored their use for expression of sgRNAs.
In mosquitoes, Pol III promoters have been utilized for

genetic control strategies that depend on CRISPR guide RNA
(sgRNA) or RNAi expression.4−8 The ability to express
multiple noncoding RNAs while minimizing repetitive
sequences is a significant advantage to these systems and
may be necessary to create robust technologies.9,10 More
broadly, as the use of mosquitoes as insect synthetic biology
chassis develops, it will be highly advantageous for researchers
to have access to a diverse range of validated noncoding RNA
promoters with varied expression levels; such a toolbox does

not yet exist in the Culicines, and we address this need here.
Alternative methods for multiplexing sgRNAs from a single
transcript, e.g., using tRNAs or ribozyme-based processing,
have been demonstrated in other species11−13 with varying
efficiencies but have not yet been applied to mosquitoes.
We hypothesized that adapting existing promoters from

related species would be a rapid and cost-effective way of
expanding the available Pol III expression toolbox in Culicines,
as cross-species activity of U6 promoters in mosquitoes has
previously been demonstrated by Konet et al.6 We systemati-
cally tested the activities of a range of previously reported
insect U6 promoters in Aedes aegypti, Aedes albopictus, and
Culex quinquefasciatus cell lines. This was supplemented by the
identification and testing of additional new U6 promoters and
the testing of U614 and 7SK2 promoters that had previously
been identified but not experimentally tested in cell lines. We
used a standardized cell- CRISPR/dCas9−VPR binding assay
to systematically quantify the promoter activity across cell
lines. Our results represent a large advance in the available

Received: October 25, 2019
Published: March 4, 2020

Technical Notepubs.acs.org/synthbio

© 2020 American Chemical Society
678

https://dx.doi.org/10.1021/acssynbio.9b00436
ACS Synth. Biol. 2020, 9, 678−681

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

D
ow

nl
oa

de
d 

vi
a 

90
.2

43
.1

20
.1

57
 o

n 
Ju

ne
 1

, 2
02

0 
at

 1
4:

35
:4

7 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michelle+A.+E.+Anderson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jessica+Purcell"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebald+A.+N.+Verkuijl"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Victoria+C.+Norman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philip+T.+Leftwich"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tim+Harvey-Samuel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tim+Harvey-Samuel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Luke+S.+Alphey"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.9b00436&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.9b00436?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.9b00436?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.9b00436?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.9b00436?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.9b00436?fig=tgr1&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00436?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


expression tools and provide a general guide for efficiently
identifying additional expression modalities.

■ RESULTS AND DISCUSSION
The transcriptional activities of 33 phylogenetically diverse
insect Pol III promoters were tested in three cell lines from
disease-relevant Culicine mosquito species (A. aegypti, A.
albopictus and C. quinquefasciatus). Potential U6 promoters
were identified by BLAST using a previously published A.
aegypti U6 RNA sequence, AAEL017774.6 The presence of
highly conserved sequence elements (a TATA-like box, PSE,
and poly-T terminator) were verified for those sequences taken
forward experimentally (sequence alignments are provided in
the Supporting Information). Each promoter was used to
express the same sgRNA, targeting a tetracycline response
element (TRE) upstream of the coding sequence of the firefly
luciferase gene. Expression of functional sgRNA by the putative
promoters, in conjunction with dCas9−VPR, binds the TRE
and activates expression of firefly luciferase. Firefly luciferase
activity was normalized to the levels of Renilla luciferase
expressed independently of the sgRNAs (Figure 1).

In Aag2 (A. aegypti) and Hsu (C. quinquefasciatus) cells, the
levels of promoter activity were broadly in line with the species
of origin of the promoter, decreased with phylogenetic
distance, and accounted for most of our observed variance
(R2

m) (R
2
m = 0.73, R2

c = 0.89 for Aag2, R2
m = 0.46, R2

c = 0.84
for Hsu; Tables S1 and S2 and Figure 2A,B), while random
variance introduced by technical replicates (replicate wells
transfected with the same mix on the same day) and
experimental blocking were low.
In A. albopictus-derived U4.4 cells we found no significant

effect of the species of origin of the promoter sequence on the
relative luciferase expression and larger random variance than
in our other experiments (R2

m = 0.22, R2
c = 0.89; Table S3 and

Figure 2C). We speculate that there may be less overall activity
from one or more of our promoter sequences in these cells,
which with fewer replicate experiments (still at least three
performed on different days) likely explains the lack of an
observable pattern here.
Within those species where we tested U6 and 7SK promoter

sequences, there was a trend toward 7SK promoter sequences
having stronger activity levels than U6 promoter sequences
regardless of their species of origin (Tables S1 and S2 and

Figure 2). None of the U6 promoters from Drosophila
melanogaster or Plutella xylostella showed any activity above
background in our mosquito cell lines (Figure 2). Promoters
are denoted by the last three digits of their accession numbers.
Shorter versions of several U6 promoters were tested in

Aag2 and Hsu cells (Figure 3) in order to determine the
minimum possible promoter fragment without compromising
the activity. For all seven promoters, the PSE and TATA-like
box were present within 100 nt upstream of the transcriptional
start and are likely the principal requirements for expression.
We did not identify any distal sequence elements with a strong
effect on the promoter activity, except in CuU6.801, where
deletion from 200 bp to 100 bp essentially eliminated the
activity. These results indicate that most of the U6 promoters
identified can be used in a very compact form.
Furthering the work of Mount et al.15 and Konet et al.,6 we

have demonstrated a pipeline for cell culture verification of Pol
III promoter sequences in Culicine mosquitoes. In these
experiments, we showed that Pol III promoter sequences from
closely related species can be used to drive high levels of
noncoding RNA expression in mosquito species of interest.
Regulatory elements from more distantly related species may
be applicable for complex applications where a range of
expression levels is desirable. We anticipate that these findings
will provide a valuable resource for those involved in the
rapidly developing field of mosquito genome editing and
synthetic biology.

Figure 1. dCas9−VPR assay components. Our assay consists of four
plasmids, each expressing a single component. HR5/IE1, a
constitutive promoter in insect cells of baculoviral origin, is used to
express a dCas9−VPR fusion protein. A second plasmid containing
seven tetO repeats upstream of the D. melanogaster minimal hsp70
promoter expresses firefly luciferase upon activation. Test promoters
all express the same sgRNA targeting the tetO repeat region. Finally, a
plasmid expressing Renilla luciferase from the OpIE2 promoter was
used as a control to normalize for transfection efficiency.

Figure 2. dCas9−VPR assay in vitro. Ratios of FF/RL luciferase
normalized to a no-sgRNA control are shown. Promoters are
organized by median relative activation within U6 and 7SK promoter
categories, and the colors denote the promoter origin by species.
Lowercase letter groupings denote significant differences at P < 0.05
following post hoc analysis. Each point represents one well of a 96-
well plate, with at least eight replicate wells transfected in at least three
replicate experiments.
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■ METHODS
Plasmids and Constructs. Cloning details and complete

plasmid sequences are available in the Supporting Information.
Cells, Transfections, and Luciferase Assay. All of the

cell lines were maintained at 28 °C without CO2 or humidity
control. Aag2 and U4.4 were maintained in L-15 (Thermo
Fisher Scientific, Waltham, MA, U.S.) supplemented with 10%
fetal bovine serum (FBS) (Labtech, Lewes, U.K.), 1%
penicillin/streptomycin (Pen/Strep) (Thermo Fisher Scien-
tific), and 10% tryptose phosphate broth (Thermo Fisher
Scientific). Hsu cells were maintained in Schneider’s
Drosophila Medium (Lonza, Basel, Switzerland) supplemented
with 10% FBS and 1% Pen/Strep. Cell lines were a kind gift of
Rennos Fragkoudis.
Cells were seeded in 96-well plates 1 day prior to

transfection with the TransIT-PRO transfection kit (Mirus
Bio, Madison, WI, U.S.) according to the manufacturer’s
recommendations. Master mixes were prepared for 8.8 wells of
a 96-well plate, and eight replicate wells per experimental
construct were transfected in three to eight replicate
experiments. In each well, 25 ng of dCas9−VPR plasmid, 25
ng of TRE-firefly reporter plasmid, 0.3 ng of Pol III-sgRNA
expressing plasmid, and 50 ng (Aag2, U4.4) or 30 ng (Hsu) of
pRL-OpIE2 were used.
Two days after transfection, the cells were washed twice with

phosphate-buffered saline, lysed with 1× Passive Lysis Buffer,
and then analyzed using the Dual Luciferase Assay Kit on a
GloMax Multi+ plate reader (Promega, Southampton, U.K.).
Data Analysis. Luciferase readings were normalized for

transfection by dividing the firefly activity by the Renilla
activity and then normalized to the average of background
readings (no-sgRNA control). Data were analyzed by
generalized linear mixed models using a Γ distribution with a

log link with the glmer function within lme4.16 Models that
encountered convergence errors were fitted with the boyqa
optimizer. Each transformed data reading for a promoter was
analyzed together with the species of origin and promoter type
(U6 or 7SK), and experimental replicates and blocking were
nested as a random effect within promoter identity. After each
model was fitted, marginal and conditional R2 values (R2

m and
R2

c, respectively) were calculated to express the variance
explained by the fixed and random factors using the package
piecewiseSEM.17 Pairwise comparisons of different promoter
strengths were calculated using Tukey HSD multiple
comparison tests using the lsmeans package.18 All analyses
were conducted in R ver. 3.5.3.19 Scripts and raw data can be
found at doi: 10.6084/m9.figshare.11407752.
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Figure 3. Mosquito U6 promoters maintain dCas9−VPR activity
down to 100 bp. Seven promoters were deleted incrementally from a
−600 bp fragment down to −100 bp upstream of the transcriptional
start. Four promoter lengths were tested for each Pol III promoter,
shown in each group left to right as 100 bp (orange), 200 bp (green),
400 bp (blue), and 600 bp (purple). Activity was assessed by the
dCas9−VPR assay in Aag2 cells and Hsu cells. FF/RL luciferase ratios
have been normalized to a no-sgRNA control. Each point represents
one well of a 96-well plate, with at least eight replicate wells
transfected at least three replicate experiments.
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