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Mosquito-borne diseases, such as malaria, dengue and chikungunya, cause morbidity
and mortality around the world. Recent advances in gene drives have produced control
methods that could theoretically modify all populations of a disease vector, from a single
release, making whole species less able to transmit pathogens. This ability has caused
both excitement, at the prospect of global eradication of mosquito-borne diseases, and
concern around safeguards. Drive mechanisms that require individuals to be released at
high frequency before genes will spread can therefore be desirable as they are potentially
localised and reversible. These include underdominance-based strategies and use of the
reproductive parasite Wolbachia. Here, we review recent advances in practical applica-
tions and mathematical analyses of these threshold-dependent gene drives with a focus
on implementation in Aedes aegypti, highlighting their mechanisms and the role of fitness
costs on introduction frequencies. Drawing on the parallels between these systems offers
useful insights into practical, controlled application of localised drives, and allows us to
assess the requirements needed for gene drive reversal.

Introduction
A gene drive can be described as any system in which genes enhance their own representation in a
sexually reproducing population, beyond that of Mendelian transmission, even if the inserted genetic
element reduces the overall fitness of the organism [1–3]. The ability to spread genes through a popu-
lation that do not benefit the individuals carrying them has applications for the control of disease
vectors, for example by spreading genes that reduce the transmission efficiency of arboviruses by mos-
quito hosts [4–7]. Inherent in most gene drive systems is the requirement for individuals to be released
above a certain threshold frequency before they will drive, though for some systems this will be
extremely low (and even then only when considering the requirement to overcome stochastic effects at
extremely low-frequency introductions) — this threshold being determined as a combination of the
action of the system and its fitness load [1].
Gene drives based on homing endonucleases such as CRISPR/Cas9 are likely to produce highly

invasive systems [8,9]; as these will require extremely low-frequency releases, unless fitness costs are
very high, or resistant mutations arise [10,11]. As a result of this high invasiveness, homing drives
have the capacity to be highly effective, but simultaneously problematic as they will inevitably cross
geo-political borders and produce potentially irreversible changes in population genetics [8,9]. There
is, therefore, still a requirement for alternative gene drives that are capable of spreading and maintain-
ing a selected cargo (e.g. imparting disease refractoriness) in a localised and reversible manner
(though see alternative proposals to localise/reverse CRISPR/Cas9 systems[12–14]). Promising alterna-
tives come from the development of systems that generate drive by imposing high fitness costs during
outbreeding, such as artificial underdominance (UD) or using the reproductive parasite Wolbachia
[15–19]. The distinction between these and homing drives is that they require much higher release
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numbers in order to establish as a self-sustaining gene drive, and are actively driven out of a population if
released below that invasion threshold. This approach has the capacity to be spatially self-limiting [20], and
reversible through the re-introduction of wild-type organisms [16,21,22].
We describe below recent empirical and modelling advances in threshold-dependent gene drives. We

compare the potential invasiveness of differing approaches at different fitness loads. Finally, as many of these
systems are proposed as ‘reversible,’ we discuss the requirements for attempting ‘drive-out’ once such gene
drives have already reached high frequency.

Underdominance
The principle of using UD as a mechanism for driving desirable genes into mosquito populations has been
around for several decades [17,23]. UD is a genetic property classically defined as the condition where, at a
single locus, the fitness of heterozygotes is lower than that of either corresponding homozygote; generating
this effect has been proposed as achievable through either chromosomal translocations or mutually suppres-
sing transgenic toxin-antidote elements (though none have as yet been developed in exactly the latter format;
Figure 1) [16,17,23,24]. Single-locus UD establishes a population level, frequency-dependent gene drive, with
the likelihood of an UD gene drive establishing total wild-type replacement depending upon the initial fre-
quency of introduction and the fitness of the introduced homozygotes relative to wildtype, but does not
require that the introduced homozygotes have an equal fitness to wildtype [23] (Figure 2). The term UD is
also applied to two-locus systems where hybrids have lower fitness than either true-breeding parental strain.
In engineered two-locus UD, designs are based on a pair of mutually suppressing dominant lethal genes.
Two genetic elements are located at independently segregating loci, individuals are viable when they inherit at
least one copy of each allele (Figure 1) [17,20]. First generation hybrids are viable, but suffer a greatly
reduced fitness at reproduction when the constructs segregate. This first generation viability allows introgres-
sion of both genetic elements into a population at a lower introduction threshold than for single-locus UD,
assuming low fitness costs (Figure 2); however, fixation of genetic elements is not guaranteed — at even mod-
erate fitness costs a stable equilibrium may instead be attained with a balance of homozygotes and heterozy-
gotes in the population. Alternatively, though higher release numbers are needed, drive can be achieved by
undertaking single-sex (male) releases, as a trade-off against releasing biting females — only female mosqui-
toes bite — the mass-release of single sexes having shown to be viable in other insect control measures such
as SIT or RIDL [25–27].
In recent years, there have been rapid advances in tools available to molecular biologists, and this has led to

several innovative new approaches towards establishing UD-based gene drives and fresh interest in their poten-
tial as stand-alone or complementary technologies to homing drives in mosquitoes [28]. We review some of
the most recent advances in UD below (for summary, see Table 1).

Haploinsufficient RNAi
The use of haploinsufficient genes as a system to generate artificial UD has been developed as a
proof-of-principle in Drosophila melanogaster [29]. Expression of the ribosomal protein gene RpL14 was
knocked down by an RNAi transgene. Many ribosomal protein genes are haploinsufficient in D. melanogaster;
individuals with only one functional copy have severe defects including delayed development and small size.
The RNAi component suppresses the endogenous RpL14 genes, while transgenic homozygotes are rescued
from the knockdown effect by carrying two copies of a synthetic RNAi-resistant ‘rescue’ version of the same
gene RpL14. However, hybrids have only one copy and therefore have greatly reduced fitness — an underdomi-
nant system (Figure 1). This system requires no particular sex or tissue specificity to function, and has potential
for implementation in a wide variety of organisms; ribosomal genes being highly conserved in function across
fungi, plants, invertebrates and vertebrates. Such systems are predicted to have high invasion thresholds, there-
fore needing a high release rate to establish but being relatively controllable and reversible (Figure 2). Caged
population trials of this system were observed to reach fixation of the genetic elements when initial releases
were made above a single release frequency of 0.61.

Maternal effects
The maternal-effect lethal underdominance (UDMEL) system [21], utilises two constructs, each expressing
different maternally deposited micro-RNAs that act as embryonic toxins, with an embryonically expressed
rescue gene, using components similar to a synthetic Medea design [30]. However, here each rescue gene
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Figure 1. Mating outcomes through inbreeding and hybridisation in one and two locus underdominance.

(A) One-locus UD A&B are mutually suppressing dominant genetic elements at the same locus. ‘Parental’ lines are either

heterozygous (in blue) for both A and B alleles at the same loci (AB) or wildtype (in red) (++). Crosses between transgenic and

wildtype strains (middle stream) produce F1 genotypes which carry unsuppressed lethals (A+ or B+) and are not viable. All

inbreeding of wildtype (right stream) produces fully viable offspring (++). All inbreeding of AB strains (left stream) produces 50%

viable offspring (AB) and 50% offspring that are homozygous at the same locus (AA or BB) and are inviable, and are

highlighted in light grey (see next). For haploinsufficient RNAi, there is only one modified genetic element at the locus,

‘parental’ lines are AA only and no inviable genotypes are produced by inbreeding. In this scenario, the light grey highlighted

box is viable. (B) Two-locus UD A&B are mutually suppressing unlinked dominant genetic elements, ‘parental’ lines are either

homozygous for both A and B (AA,BB) or wildtype (++,++). All inbreeding of either wildtype or AA,BB strains (right and left

streams, respectively) produces fully viable homozygous offspring. F1 hybrids between these strains (A+,B+) (middle stream)

are also viable; however, some of the F2 progeny are non-viable. F1 hybrids therefore have reduced fitness compared with

either parental homozygote. As all F1 hybrids are viable, here we illustrate crosses of these F1 hybrids to each other and both

parental strains. Genotypes carrying unsuppressed lethals are highlighted in dark grey. If a single copy of a suppressor were

insufficient to suppress two copies of a lethal, then these genotypes would also be inviable, these genotypes are highlighted in

light grey. (C) The relationship between levels of hybridsation and fitness at the population level for interbreeding between

modified populations and wildtype. Fitness is highest when individuals from either population inbreed, as the frequency of

hybridisation increases, the relative fitness of the population falls.
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is attached to an opposite toxin, so toxin A is linked with rescue B and vice versa. Survival of embryos is
contingent on inheriting both constructs simultaneously. This system can be built to function as either a
single- or two-locus UD system; unlike most proposed engineered UD systems, toxins are only expressed/
deposited by mothers, not fathers, such that transgenic heterozygotes are always viable when
the transgenic parent is male. This allows for the potential of ‘male-only’ releases in both single and
two-locus forms.
In a single-locus design, the two constructs are arranged at the same locus on homologous chromosomes

and only trans-heterozygotes (carrying one copy of each construct) are viable (crosses between trans-
heterozygotes will produce 50% viable trans-heterozygote offspring, and 50% non-viable homozygotes). In a
two-locus system, individuals would need to be made homozygous for each genetic element at independently
segregating loci.
Cage experiments demonstrated the ability to drive to fixation when male-only release percentages as a

fraction of the total population were greater than 50% [21].

Reciprocal translocations
Buchman et al. [22] generated homozygous chromosomal translocations between chromosome 2 and 3 in
D. melanogaster using two previously inserted transgenes carrying rare base cutters inserted at these different
loci. This would function as a two-locus UD system as F1 hybrids are viable. Crosses between heterozygous
chromosome translocated individuals and wildtype, generated 50% non-viable individuals (resulting from aneu-
ploidy, non-balanced chromosomes), and 50% orthoploid (balanced chromosomes, half of these wildtype, the
others balanced translocation heterozygotes bearing the reciprocal translocations). Caged population trials
demonstrated that the drive system spread to fixation at introduction frequencies >50% (60, 70 and 80%
tested), and drop to extinction at frequencies <50% (20, 30, 40% tested). The authors discussed that rates of
spread to fixation and elimination were, respectively, slower and faster than predicted indicating unexplained
fitness costs in their system. Limitations inherent to this system come from the rather unpredictable nature
of fitness costs associated with chromosome translocations; multiple rounds of trial and error may be required
before a strain with suitable invasion potential can be developed.

Figure 2. Comparison of predicted introduction threshold frequencies for Wolbachia, single-locus UD, haploinsufficient

RNAi and two-locus UD systems.

For each fitness cost parameter (relative to wildtype), a population genetics mathematical model is repeatedly simulated for

different introduction frequencies with the first (lowest) frequency giving successful introgression being output to form the

threshold lines seen here. For two-locus UD, the dotted portion of the line indicates a maximum fitness cost beyond which

introgression cannot be achieved. In the case of haploinsufficient RNAi, it is assumed that fitness costs affect only

heterozygotes, i.e. wildtype and homozygotes are of equal fitness. The four mathematical models used here are adapted from

those of Marshall and Hay [31] except that for haploinsufficient RNAi which is from Reeves et al. [29].
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Table 1 Overview comparison of the gene drive systems explored in this manuscript
Note that this table is for broad comparison purposes only and individual parameters (e.g. invasion thresholds) for systems
grouped together (e.g. various 2-locus systems) will differ from one another. Equally, for a single system (e.g. unidirectional
Wolbachia), characteristics will differ depending on the specifics of that system (e.g. fitness costs/maternal transmission rates and
penetrance of cytoplasmic incompatibility).

Wolbachia Engineered UD

Bidirectional Unidirectional One-locus1 Two-locus2

Status of modified
vector

Non-GM Non-GM GM GM

Intended outcome
of drive deployment

Replacement Replacement Replacement/
suppression
(dependent on
cargo gene)

Replacement/
suppression
(dependent on cargo
gene)

Method of
deployment

Requires bisex
release

Requires bisex or
female-only release

Requires bisex
release
(UDMEL can be
established with
male-only release)

Can be established
with male-only
releases

Relative introduction
allele frequency
threshold (assuming
equal fitness with
existing wild
population)

High (>0.5) Low (>0)
Current field strains
estimated at ∼0.3

High (>0.5) Low (<0.5)

Relative
invasiveness

Low
Assuming recipient
non-target
population has
same Wolbachia
infection as target
population

High
Assuming recipient
non-target
population has no
existing Wolbachia
infection

Low High

Relative ‘drive-out’
ability

High
Requires wild-type
bisex release

Low
Requires wild-type
bisex release

High
Requires wild-type
bisex release
(UDMEL can use
single-sex female
release)

Low
Can be achieved by
releasing only
wild-type, non-biting,
males

Current
development status

Proposed [32] Field testing in A.
aegypti

Laboratory
proof-of-principle in
D. melanogaster
Laboratory
development in
Culex
quinquefasciatus

Laboratory
proof-of-principle in
D. melanogaster
Laboratory
development in A.
aegypti

1Includes haploinsufficient, (1-locus) toxin-antidote (proposed but not yet developed), PTA overexpression, and (1-locus) UDMEL based systems.
2Includes (2-locus) toxin-antidote (proposed but not yet developed), (2-locus UDMEL) and reciprocal chromosomal translocations based systems.
KEY: Drive outcome — goal of deploying drive. Either replacement of wild population with modified, less harmful population or suppression of wild
population density. For engineered UD systems, outcome will depend on cargo gene tightly linked to other drive components. Bisex release:
Release into the wild of individuals from both sexes, usually in roughly equal number. Introduction allele frequency threshold: The frequency the
released modification must reach in the wild population before the drive will then begin to spread. Above this frequency, the drive conveys a
population-level fitness advantage. Invasiveness: Propensity for a released drive to begin spreading in populations other than the one into which it
was released. Note that these are relative invasiveness levels and all these systems are regarded as relatively non-invasive compared with other
systems such as homing drives. Drive-out ability: The relative ease with which a population where the released modification has spread to fixation
can be returned to its original non-modified state through the release of wild-type (non-modified) individuals. Note that this is the inverse of the
introduction threshold/invasiveness of the system.
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CRISPRa
CRISPR technology has been readily applied towards the development of highly invasive gene drive systems as
described above [33–35]. However, recent efforts have also been made towards developing Cas9 for less invasive
UD gene drives [36]. Engineered CRISPRa (deactivated Cas9 with a fused transactivation domain [37–39])
allows a modified Cas9 to produce dominant-lethal ectopic/overexpression of endogenous genes. Lethality is
prevented in the homozygous transgenic line by recoding both copies of the target promoter region such that it
is no longer recognised by the CRISPRa complex. This system has promise as a drive system, in tested organ-
isms (yeast and fruitflies) [36,40] there are a large number of promoter regions that readily respond to
CRISPRa [41], resulting in a wide array of potential targets. However, evidence so far indicates that fine-tuning
activation against basal toxicity, in order to make a viable transgenic strain for gene drive, is less straightfor-
ward. CRISPRa in D. melanogaster showed only partial efficacy — as they could not be readily assembled into
a homozygous viable line in order for a drive to be tested. Those lines where the CRISPRa transgenes were
homozygous viable did not show complete lethality when crossed to wildtype, slowing the potential spread of
this drive system [40].

Wolbachia
Wolbachia, a diverse group of maternally inherited intracellular bacteria, are present in many species of arthro-
pods [42–44]. Wolbachia manifest a wide variety of different driving phenotypes such as feminising, partheno-
genesis and cytoplasmic incompatibility (CI), depending on the strain of Wolbachia and the species infected
[45–47]. CI drives Wolbachia infection as uninfected females have a reproductive disadvantage relative to
infected females, caused by (and in proportion to the frequency of) infected males — these produce viable
embryos with infected females but inviable with uninfected females. Combined with the maternal inheritance
of Wolbachia, this results in an increase in their frequency, and any desirable traits associated with them, over
multiple generations. Wolbachia are thus a gene drive system, with a much lower invasion threshold than pre-
dicted for UD methods (Figure 1).
Aedes aegypti populations are not naturally infected with Wolbachia, but when this is achieved they demon-

strated significant pathogen blocking of viruses such as dengue, Zika and chikungunya, at least for certain
strains of Wolbachia and through unknown mechanisms [4,48,49]. A. aegypti strains artificially infected with
wMel or wMelPop strains from D. melanogaster have been used in field trials [50–53]; to date, Wolbachia is the
only gene drive system that has been used in open release. wMelPop demonstrated almost complete blocking of
transmission of dengue viruses but also high fitness costs and failed to establish in target field populations [52].
wMel shows partial blocking of dengue viruses in the laboratory (but see [54,55]) with lower fitness costs and
in trials in Australia established and slowly spread from two of three release sites [53,56] (Table 1.)
Efforts to improve the fitness of Wolbachia strains in A. aegypti are currently underway, with the introduc-

tion of Wolbachia from other species such as Drosophila simulans (wAu) and Aedes albopictus (wAlbA/wAlbB)
[57]. In the laboratory, wAu produced significantly better pathogen blocking than wMel, but does not produce
CI and is therefore incapable of spreading as a drive. Proof-of-principle research has been generated with
‘superinfections’ (multiple strains of Wolbachia combined in a single host), to combine the most desirable traits
of individual strains, and may be a route to improvement of this system [58–60].

Modelling of invasion potential
Modelling has been an essential tool in the successful development of genetic control measures both before and
after deployment. Probably due to an increasing focus on CRISPR-based systems, there have been relatively few
modelling studies for UD systems in recent years, nonetheless several key advances have been made. One
recent study looked at the risk of ‘escape’ or introgression of drive systems into non-intended neighbouring
populations. This showed that two-locus systems require high rates of migration (e.g. ∼5% exchanged per gen-
eration when transgene homozygosity confers a 5% fitness cost) in order to spread to high frequency in neigh-
bouring populations, and were unable to find conditions where a one-locus system might spread [20]. The
study of two-locus gene drives has also been broadened to consider a range of different genetic characteristics
(e.g. female-specific lethal genes) and release scenarios (e.g. single versus multiple and male-only versus bisex
releases) [61]. Laruson and Reed [62] showed that meta-populations with small numbers of migration routes
between sub-populations (e.g. a linear arrangement) have a lower effective migration rate than those with many
migration routes. Thus, underdominant genetic mutations are less likely to spread through a meta-population
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with fewer migration routes between sub-populations. This may prove an important consideration when
designing and deploying UD-based gene drive systems in specific contexts.
Probably due to the field release status of Wolbachia-infected mosquitoes in Australia, there have been

several recent studies modelling wMel. One major focus of this work has been exploring factors relating to geo-
graphic spread. Models indicated that strong density-dependent larval competition can decrease female fecund-
ity and increase larval development time, slowing the spread of Wolbachia when released into a wild
population [63,64]. Turelli & Barton [65] found that releases must exceed a critical size (i.e. cover a large
enough geographic area) to spread and that this geographic spread would be slower than expected from obser-
vations of natural Wolbachia invasions in other species. The presence of a critical release area appears to be
supported by data from releases in Queensland, Australia [53].
In light of the current field use, many studies have sought to predict the likely epidemiological impact of suc-

cessful Wolbachia releases on dengue prevalence in a range of scenarios, including non-endemic settings
(imported cases) and areas with more than one circulating serotype [66–69]. Results in these studies suggest
that whilst Wolbachia releases are likely to significantly reduce the number of dengue infections, at least in low
transmission settings, they are unlikely to completely eliminate them.

Drive-out
An often cited but poorly described aspect of high threshold drive system theory is that, unlike homing drives,
it is possible to reverse genetically modified populations to wildtype through the release of unmodified indivi-
duals [22,62,70] (but see [21]), a mechanism which could be highly desirable should the application of any of
these technologies have unintended impacts. In these systems, population replacement could be achieved by
releasing wild-type individuals until they reach a frequency in which the drive system imposes a greater out-
breeding cost on transgenics than wildtypes, resulting in ‘drive-out’ of the genetic elements.
The frequency of wild-type releases required to establish ‘drive-out’ from a modified population at fixation

should function as a direct inverse of the threshold required for the genetic elements to invade, and could
potentially require the release of large numbers of wild-type males and females in order to achieve this aim.
Practical concerns may exist around the prospect of a ‘reversible system’ that requires the mass-release of add-
itional disease vectors, and the ability to induce reversal through ‘male-only’ releases would therefore be desir-
able. Of the UD systems described above, the single-locus ones (haploinsufficient RNAi, single-locus UDMEL,
CRISPRa) cannot be reversed without the release of wild-type males and females (or in UDMEL just females) —
as hybridisation is lethal, single-sex releases would produce no viable offspring, though released wild-type
males could instead be used to induce population reduction. In a two-locus UD system (reciprocal transloca-
tions, two-locus UDMEL), the threshold frequency required for drive-out is more difficult to attain as this
system has a greater invasion potential (though a stable equilibrium below fixation is possible here, see above).
As heterozygotes are viable, it is possible to achieve drive reversal through single-sex, male-only releases.
Reversal would be slower than with a bisex release, but would offset damage by not releasing additional biting
females.
Reversal of Wolbachia systems presents unique difficulties due to the requirement for release of extremely

large numbers of wild-type males and females, far in excess of that needed for either UD system as described
above. Wolbachia infections can be replaced with other, incompatible Wolbachia infections, but it appears
extremely difficult to get a large infected population back to an uninfected state.

Challenges and future perspectives
Threshold-dependent gene drives have many advantages that make them suitable for localised population
modification, including higher invasion thresholds, lower risk of escape, and capacity for reversal or ‘drive-out’.
Previous applied use of sterile males — SIT and RIDL and ongoing trials with Wolbachia — demonstrate that
continuous or mass releases are achievable at much higher numbers than required for any of these gene drive
systems and can produce significant impact on vector populations [51,52]. The ongoing field testing of
Wolbachia-based gene drives in A. aegypti demonstrates potential for field release and establishment of a gene
drive system, in spite of relatively high fitness costs. Looking forward, development of alternative strains may
improve the performance of the system. In comparison, UD gene drives are markedly less developed, with no
field trials or established systems in Aedes, but many promising laboratory proof-of principles in Drosophila
[22,23,30,40]. Invasion thresholds for UD systems are higher than those predicted for Wolbachia at equal
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fitness, making the system more local, controllable and reversible, at the cost of needing somewhat higher
initial release numbers (Figure 2).
Localised gene drives represent a powerful complementary tool to more invasive homing drives, and applied

separately or together provide a suite of powerful tools towards reducing insect-borne infectious disease.
Theoretical underpinnings are strong, and with active experimental work in several laboratories, looking
forward it is likely that there will be a range of potential gene drive systems that can be employed on a
case-by-case basis within communities and countries depending on requirements.

Abbreviations
CI, cytoplasmic incompatibility; UD, underdominance; UDMEL, maternal-effect lethal underdominance.
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